Package: boostingDEA 0.1.0

Maria D. Guillen

boostingDEA: A Boosting Approach to Data Envelopment Analysis

Includes functions to estimate production frontiers and make ideal output predictions in the Data Envelopment Analysis (DEA) context using both standard models from DEA and Free Disposal Hull (FDH) and boosting techniques. In particular, EATBoosting (Guillen et al., 2023 <doi:10.1016/j.eswa.2022.119134>) and MARSBoosting. Moreover, the package includes code for estimating several technical efficiency measures using different models such as the input and output-oriented radial measures, the input and output-oriented Russell measures, the Directional Distance Function (DDF), the Weighted Additive Measure (WAM) and the Slacks-Based Measure (SBM).

Authors:Maria D. Guillen [cre, aut], Juan Aparicio [aut], Víctor España [aut]

boostingDEA_0.1.0.tar.gz
boostingDEA_0.1.0.zip(r-4.5)boostingDEA_0.1.0.zip(r-4.4)boostingDEA_0.1.0.zip(r-4.3)
boostingDEA_0.1.0.tgz(r-4.4-any)boostingDEA_0.1.0.tgz(r-4.3-any)
boostingDEA_0.1.0.tar.gz(r-4.5-noble)boostingDEA_0.1.0.tar.gz(r-4.4-noble)
boostingDEA_0.1.0.tgz(r-4.4-emscripten)boostingDEA_0.1.0.tgz(r-4.3-emscripten)
boostingDEA.pdf |boostingDEA.html
boostingDEA/json (API)

# Install 'boostingDEA' in R:
install.packages('boostingDEA', repos = c('https://mariaguilleng.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/itsmeryguillen/boostingdea/issues

Datasets:

On CRAN:

4.00 score 2 stars 3 scripts 186 downloads 14 exports 26 dependencies

Last updated 1 years agofrom:acbe2c5149. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:bestEATBoostbestMARSBoostCobbDouglasDEADEA_objectEATEATBoostEATBoost_objectefficiencyFDHFDH_objectMARSAdaptedMARSBoostMARSBoost_object

Dependencies:bitopscaToolsclidplyrfansigenericsgluegplotsgtoolsKernSmoothlifecyclelpSolveAPImagrittrMLmetricspillarpkgconfigR6RglpkrlangROCRslamtibbletidyselectutf8vctrswithr

boostingDEA

Rendered fromboostingDEA.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2023-05-15
Started: 2023-04-13

Readme and manuals

Help Manual

Help pageTopics
Add a new pair of Basis FunctionsAddBF
Taiwanese banks (in 2010)banks
Linear programming model for radial input measureBBC_in
Linear programming model for radial output measureBBC_out
Tuning an EATBoost modelbestEATBoost
Tuning an MARSBoost modelbestMARSBoost
Single Output Data GenerationCobbDouglas
Pareto-dominance relationshipscomparePareto
Generate a new pair of Basis FunctionsCreateBF
Generate a new pair of Cubic Basis FunctionsCreateCubicBF
Linear programming model for Directional Distance Function measureDDF
Data Envelope Analysis modelDEA DEA_object
Deep Efficiency Analysis TreesdeepEAT
Efficiency Analysis TreesEAT
Create a EAT objectEAT_object
Gradient Tree BoostingEATBoost EATBoost_object
Calculate efficiency scoresefficiency
Enhanced Russell Graph measureERG
Estimate Coefficients in Multivariate Adaptive Frontier Splines during Forward Procedure.EstimCoeffsForward
Estimation of child nodesestimEAT
Free Disposal Hull modelFDH FDH_object
Get 'EATBoost' leaves supportsget.a.EATBoost
Get the inferior corner of the leave support from all trees of 'EATBoost'get.a.trees
Get the superior corner of the leave support from all trees of 'EATBoost'get.b.trees
Get intersection between two leaves supportsget.intersection.a
Is Final NodeisFinalNode
Adapted Multivariate Adaptive Frontier SplinesMARSAdapted
Create an MARSAdapted objectMARSAdapted_object
Smoothing (Forward) Multivariate Adaptive Frontier SplinesMARSAdaptedSmooth
LS-Boosting with adapted Multivariate Adaptive Frontier Splines (MARS)MARSBoost MARSBoost_object
Mean Squared Errormse
Mean Squared Errormse_tree
Position of the nodeposIdNode
Model Prediction for DEApredict.DEA
Model Prediction for Efficiency Analysis Trees.predict.EAT
Model prediction for EATBoost algorithmpredict.EATBoost
Model Prediction for FDHpredict.FDH
Model Prediction for Adapted Multivariate Adaptive Frontier Splines.predict.MARSAdapted
Model Prediction for Boosted Multivariate Adaptive Frontier Splinespredict.MARSBoost
Efficiency Analysis Trees Predictorpredictor
Data Pre-processing for Multivariate Adaptive Frontier Splines.preProcess
Linear programming model for Russell input measureRussell_in
Linear programming model for Russell output measureRussell_out
Split nodesplit
Linear programming model for Weighted Additive ModelWAM